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The explicit expressions for the recently formulated general-model-space (GMS) ver-
sion of the multireference state-universal (SU) coupled-cluster (CC) method [X. Li and
J. Paldus, J. Chem. Phys. 119 (2003) 5320], truncated at the level of single (S) and dou-
ble (D) excitations, are re-derived using the spin-orbital form of the diagrammatic tech-
nique. The focus is on the so-called coupling coefficients, which represent a new type
of quantity that does not appear in the single-reference CC approaches. The role of the
connectivity conditions, referred to as the C-conditions, in the elimination of discon-
nected terms in the GMS SU CC method is analyzed in terms of the connectivity of
the resulting diagrams and is illustrated on typical examples.
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1. Introduction

The multi reference (MR) generalizations of the standard single reference
(SR) coupled-cluster (CC) method are invariably based on the effective Hamil-
tonian formalism (see, e.g., [1–3]). The effective Hamiltonian H(eff) is defined on
a suitably chosen, finite-dimensional model space M0, M0 = Span{|�i〉 : i =
1, . . . , M}, via the wave operator U which, in turn, is determined by the general-
ized Bloch equation. With a suitable choice of the model space M0 this formal-
ism yields, in principle, the exact solution of the respective Schrödinger equation,
equation (1), for a finite number M of target states |�i〉,

H |�i〉 = Ei |�i〉 . (1)
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The crucial step in the design of the MR version of the CC theory that is
based on the effective Hamiltonian formalism is the generalization of the SR
CC Ansatz. Unfortunately, such a generalization is not unambiguous and, cur-
rently, two distinct formulations are available, leading to the so-called valence
universal (VU) or Fock space [4–8] and state-universal (SU) or Hilbert space [9]
methods. The VU approach is characterized by the cluster Ansatz involving a
single-cluster operator. However, this Ansatz necessitates the consideration of an
entire chain of model spaces that involve a varying number of electrons (see, e.g.,
[8]). In contrast, the SU approach employs one and only one model space, char-
acterized by a fixed number of valence electrons, and associates a distinct cluster
operator T (i) with each reference configuration |�i〉, so that

U =
M∑
i=1

eT (i)|�i〉〈�i | . (2)

In this paper we focus solely on the SU CC approach.
Although both genuine MR CC approaches just mentioned were formu-

lated more than two decades ago, only a few applications to actual systems have
been made in the meantime and no generic codes have been developed. One of
the reasons for the lack of practical exploitations of these methods is undoubt-
edly the fact that in their standard version they suffer from several impediments,
not to mention their complexity and computational demands. Perhaps the most
serious obstacle in actual applications to the molecular electronic structure is the
so-called intruder state problem. Just as in the SR case, where the reference con-
figuration |�0〉 is required to be nondegenerate [10,11] and to provide a rea-
sonable approximation to the ground state wave function |�〉, the choice of the
model space M0 should be such that its spanning set {|�i〉 : i = 1, . . . , M} is
not quasidegenerate with other configurations belonging to the same symmetry
species and that each target wave function |�i〉 has a sizeable component within
M0. While this requirement can be reasonably satisfied at one, say equilibrium,
geometry, this may no longer be the case at another geometry, since the mani-
fold of excited state potential energy surfaces or curves is generally sufficiently
complex and dense.

The intruder state problem is further aggravated by the fact that
in order to warrant the size-extensivity of the method, M0 should be a complete
model space (CMS), i.e., should involve all possible configurations that result by
occupying a chosen set of active orbitals by a given number of valence
electrons. Since the dimension of such a CMS rapidly increases with the number
of active orbitals (in the same way as does the dimension of the corresponding
full configuration interaction (FCI) space), we face not only similarly increasing
computational demands, but also heightened likelihood of the occurrence
of the intruder states. For this very reason, much attention has been
paid to the development of methods that employ truncated or incomplete
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model spaces, the extreme case being various state-selective CC methods
(see, e.g., [3,12]).

The recently formulated MR SU CC approach [13–17] employs a com-
pletely general model space (GMS) and introduces the concept of the C-conditions
that represent constraints imposed on the cluster amplitudes associated with the
so-called internal excitations (i.e., those transforming one reference configura-
tion into another one). These constraints guarantee that the target wave func-
tions become the exact FCI states when no truncation of cluster amplitudes is
enforced (see also [9]).

It is well known that the time-independent, second-quantization-based dia-
grammatic techniques [18] are extremely beneficial not only in the many-body
perturbation theory (MBPT), but also in the development of the explicit for-
malism of the standard SR CC theory (see, e.g., [1,3,5,10–12,19,20]). Indeed,
these techniques provide a better insight into the CC formalism and its relation-
ship with the MBPT, are less error prone than the algebraic methods and, most
importantly, facilitate the design of efficient codes by readily identifying suitable
intermediates. The extension of this technique to the MR formalism, particularly
in the GMS SU CC case, is complicated by the absence of a readily identifiable
unique Fermi vacuum.

It is the aim of this paper to show how the diagrammatic approach can be
modified to yield explicit expressions even in the MR SU CC case, particularly
in the least obvious case of the evaluation of the so-called coupling coefficients,
which involve cluster operators associated with two distinct reference configura-
tions. For this reason, we address these quantities in detail, since other compo-
nents of the MR SU CC equations can be handled in a similar way as in the SR
case.

In section 2, we briefly summarize the essential points of the SU CC
method and in section 3 we indicate the modifications characterizing the
GMS-based version of this method. We then address the diagrammatic evalua-
tion of the SU CC coupling coefficients, considering first the general expressions
in terms of the CI-type components, followed by the explicit expressions in
terms of the antisymmetrized cluster amplitudes, considering the most important
cases of singly and doubly excited configurations. In this way we re-derive the
expressions given in equations (82)–(90) and (93)–(114) of [13] by relying solely
on the diagrammatic technique.

2. SU CC method [9]

Using a CMS M0, M0 = Span{|�i〉 : i = 1, . . . , M}, the SU cluster Ansatz
has the form given by equation (2), in which the cluster operator T (i) that is
associated with the reference configuration |�i〉 has the standard form in terms
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of the excitation operators G
(m)
� (i),

T (i) =
∑
m

∑
�

t
(m)
� (i)G

(m)
� (i) , (3)

where

G
(m)
� (i)|�i〉 = |�(m)

i;� 〉 ∈ M⊥
0 . (4)

Here, the superscript (m) indicates the excitation level relative to |�i〉 and the
subscript � enumerates distinct excitation operators and the corresponding con-
figurations |�(m)

i;� 〉, which belong to the orthogonal complement M⊥
0 of the CMS

M0. Later on we drop the superscript (m) when it is not essential or when
it is obvious from the index set defining the excitation operator. (In any case,
the excitation level is not uniquely defined when a spin-adapted formalism is
employed. For simplicity’s sake we adhere in this paper to the molecular spin
orbital (MSO) formalism.)

Within the MSO formalism, the excitation operator G
(m)
� (i) is fully deter-

mined by specifying the MSOs {I1, I2, . . . , Im} that are occupied in |�i〉 and are
replaced by the MSOs {J1, J2, . . . , Jm} that do not constitute |�i〉 (assuming a
well-defined phase convention), so that � and (m) are implied by the MSO index
set

� ≡ {J1, J2, . . . , Jm : I1, I2, . . . , Im} (5)

and

G
(m)
� (i) ≡ G

J1J2...Jm

I1I2...Im
(i) =

m∏
k=1

(X
†
Jk

XIk
) . (6)

Thus, in the CMS case, the cluster amplitudes that are associated with the inter-
nal excitation operators (i.e., those involving only active MSOs) are set equal to
zero by definition, and are thus absent from the expansion of T (i), equation (3),
as implied by the requirement given by equation (4).

When we employ the above given SU CC Ansatz for the wave operator U ,
equations (2)–(4), in the generalized Bloch equation, we obtain the basic equa-
tions of the SU CC formalism [9] (see also [1–3]), which can be written in the
following compact form

�m(�; i) =
∑
j (�=i)

�ij (�; m)H
(eff)
j i , (7)

where the left-hand side (LHS) has the form analogous to that characterizing the
SR CC equations, i.e.,

�m(�; i) = 〈G(m)
� (i)�i |H̄ (i)|�i〉 , (8)
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H̄ (i) = e−T (i)HeT (i) , (9)

the �ij (�; m) designates the so-called coupling coefficient

�ij (�; m) = 〈G(m)
� (i)�i |e−T (i)eT (j)|�j 〉 , (10)

and H
(eff)
ij represents the matrix element of the effective Hamiltonian,

H
(eff)
ij = 〈�i |HeT (j)|�j 〉 . (11)

Once the cluster amplitudes t
(m)
� (i) ≡ t�(i) are found by solving the

SU CC equations (7), one evaluates the effective Hamiltonian H(eff) [including
the diagonal elements H

(eff)
ii ≡ �0(∅; i)] and determines its eigenvectors ‖Cij‖,

i = 1, . . . , M and corresponding eigenvalues Ei, i = 1, . . . , M. The target wave
functions |�i〉, i = 1, . . . , M are then given by

|�i〉 =
M∑

j=1

Cije
T (j)|�j 〉 . (12)

Of course, in actual applications, the expansion for T (i)’s is truncated at an
appropriate level, usually at the SD (singles and doubles) level, as in the SR CC
approach, resulting in the SU CCSD method.

3. GMS SU CC method [13]

When we employ a truncated or incomplete model space (IMS) or, in fact,
a completely arbitrary model space M0 which we refer to as a GMS [13–17],
we cannot ignore cluster amplitudes that correspond to the excitation operators
transforming one reference into another one. We thus distinguish the internal
and the external cluster amplitudes and the corresponding excitation operators,
the former ones transforming the configurations spanning M0 among them-
selves, while the latter ones are associated with configurations spanning M⊥

0 . We
have shown [13–17] that in order to achieve a proper representation of the target
states |�i〉, i = 1, . . . , M, the internal amplitudes must be determined by the so-
called C-conditions, representing constraints on the internal cluster amplitudes.

Considering two references |�i〉 and |�j 〉 from M0 such that

|�i〉 = G
Q1Q2...Qk

P1P2...Pk
|�j 〉 , (13)

the C-conditions state [13] that the (fully antisymmetrized) internal cluster ampli-
tudes t

Q1Q2...Qk

P1P2...Pk
(j) and t

P1P2...Pk

Q1Q2...Qk
(i) are given by the negative of the products

of the corresponding lower-order amplitudes, so that the CI-type coefficient or
amplitude τ

Q1Q2...Qk

P1P2...Pk
(j) [or τ

P1P2...Pk

Q1Q2...Qk
(i)] vanishes, namely

〈�i |eT (j)|�j 〉 = τ
Q1Q2...Qk

P1P2...Pk
(j) (14)
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= t
Q1Q2...Qk

P1P2...Pk
(j) + (a.d.c.) = 0 , (15)

i.e., that

t
Q1Q2...Qk

P1P2...Pk
(j) = −(a.d.c.) , (16)

and similarly for t
P1P2...Pk

Q1Q2...Qk
(i). Here, the symbol (a.d.c.) stands for all disconnected

clusters that are associated with the leading cluster amplitude, as implied by the
cluster analysis of the FCI wave function [21] (see also [1,3,10,12] and references
therein). Thus, all one-body cluster amplitudes t

Q1
P1

(j) that are associated with
the internal excitations G

Q1
P1

(j), (i.e., |�i〉 = G
Q1
P1

|�j 〉) must vanish, while for the
two-body internal amplitudes t

Q1Q2
P1P2

(j) we have that [13] (dropping the argument
j for simplicity)

τ
Q1Q2
P1P2

= t
Q1Q2
P1P2

+ t
Q1
P1

t
Q2
P2

− t
Q1
P2

t
Q2
P1

, (17)

implying

t
Q1Q2
P1P2

= t
Q1
P2

t
Q2
P1

− t
Q1
P1

t
Q2
P2

, (18)

where we assumed that |�i〉 = G
Q1Q2
P1P2

|�j 〉, |�i〉, |�j 〉 ∈ M0. In general, we have
that

(a.d.c.) ≡
∑
Pk

p∏
�=1

〈�i |(n�!)−1[T�(j)]n� |�j 〉 , (19)

where the sum extends over all nontrivial partitions Pk of k, and k = ∑p

�=1 � ·n�

with 0 � n� � k, 1 � p < k.
Thus, in the GMS SU CC approach, only the external cluster amplitudes

are determined via the SU CC equations (7), while the internal amplitudes are
given by the C-conditions.

4. Explicit form of the GMS SU CCSD equations

We are now ready to consider the explicit form of the GMS SU CC
equations. We first briefly address the LHS of equation (7) and the effective
Hamiltonian matrix elements, and subsequently focus on the evaluation of the
coupling coefficients, equation (10).
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4.1. Evaluation of �m(�; i) and H
(eff)
ij

The LHS of the SU CC equations, equation (7), is given by the expression
for �m(�; i), equations (8) and (9), which in the specific case of � and m given
by equation (5) can be rewritten as follows

�(I1, I2, . . . , Im : J1, J2, . . . , Jm; i) = 〈GJ1J2...Jm

I1I2...Im
(i)�i |e−T (i)HeT (i)|�i〉 . (20)

This expression has the same form as the LHS of SR CC equations, the only
difference being that we now deal with different references |�i〉. However, con-
sidering each reference as a new Fermi vacuum, this LHS will have the same
form as in the SR case when expressed in terms of the t (i) cluster amplitudes.
In fact, we can even use the actual SR CC codes after making suitable changes.

Similarly, the diagonal elements of the effective Hamiltonian (which are
only needed in the last step; see above) are also given by the same expressions
as in the SR case. In fact, we have that

H
(eff)
ii = �0(∅; i) = 〈�i |H |�i〉 = 〈�i |HeT (i)|�i〉 (21)

= 〈�i |H(1 + T (i) + 1
2 [T (i)]2)|�i〉 . (22)

Moreover, the expressions for �k can be exploited in the evaluation of the off-
diagonal elements of H(eff), as shown in [13], where the diagrammatic version
was also presented. For example, when |�i〉 and |�j 〉 differ in two MSO, so that
|�i〉 = G

Q1Q2
P1P2

|�j 〉, it can be shown [13] that

H
(eff)
ij = 〈�i |HeT (j)|�j 〉 (23)

= �2(P1P2 : Q1Q2; j) + PQ1Q2PP1P2 t
Q1
P1

(j) �1(P2 : Q2; j) , (24)

where

PXY = 1 − (XY) , (25)

with (XY) representing the transposition of X and Y . The diagrammatic repre-
sentation also implies (cf. figures 1 and 2 of [13]) that the disconnected com-
ponent [which is given by the expression τ

Q1Q2
P1P2

(j)H
(eff)
jj in the above presented

example, equation (24)] vanishes thanks to the relevant C-condition.
We can thus turn our attention to the evaluation of the coupling coeffi-

cients, equation (10).

4.2. Evaluation of coupling coefficients

Consider a general coupling coefficient �ij (�; m), equation (10), which in
the case that G

(m)
� (i) is given by equation (6) we write in a more explicit form,
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namely

�ij (�; m) ≡ �k(J1J2 . . . Jm : I1I2 . . . Im) (26)

= 〈GJ1J2...Jm

I1I2...Im
(i)�i |e−T (i)eT (j)|�j 〉 , (27)

where we now drop the superscripts i and j since they are apparent from the
context and introduce the subscript k indicating that the configurations |�i〉 and
|�j 〉 differ in k MSOs, so that we can write

|�i〉 = |{(AB . . . )Q1Q2 . . . Qk}〉 , (28)

|�j 〉 = |{(AB . . . )P1P2 . . . Pk}〉 . (29)

Here, the braces imply the antisymmetrization of the spin-orbital product and
the symbol (AB . . . ) designates the MSOs that are common to both references
related via equation (13) or, equivalently, via

|�j 〉 = G
P1P2...Pk

Q1Q2...Qk
|�i〉 . (30)

As explained in [13], we refer to the MSOs |A〉, |B〉, |C〉, etc. that are
occupied in both references (28) and (29) as the local core spin orbitals, while
those occupied either in |�i〉 or in |�j 〉, but not in both (i.e., those labelled
by Pµ’s and Qµ’s in our case), represent the local active MSOs. Those MSOs
which are not occupied in either configuration (28) or (29) then represent the
local virtual MSOs and are labelled by R, S, T , etc. Thus, the MSOs |Iµ〉 that
are labelled by Iµ, µ = 1, . . . , m, in equation (27), can be either local core
MSOs (i.e., |A〉, |B〉, |C〉 . . . ) or local active MSOs |Qµ〉, µ = 1, . . . , k. Sim-
ilarly, those labelled by Jµ, µ = 1, . . . , m, can represent either local virtual
MSOs (i.e., |R〉, |S〉, |T 〉, . . . ) or local active MSOs |Pµ〉, µ = 1, . . . , k. The
same rules apply, of course, to the excitation operators that define the cluster
operator T (i).

Using equation (30), we can rewrite the expression for the coupling coeffi-
cient �ij (�; m), equation (27), as a mean value in the state |�i〉, namely

�k(J1J2 . . . Jm : I1I2 . . . Im) = 〈GJ1J2...Jm

I1I2...Im
(i)�i |e−T (i)eT (j)G

P1P2...Pk

Q1Q2...Qk
|�i〉

= 〈�i |GI1I2...Im

J1J2...Jm
(i)e−T (i)eT (j)G

P1P2...Pk

Q1Q2...Qk
|�i〉 . (31)

Following standard diagrammatic rules (see, e.g., [1,3,10–12,18–20,22,23] and
references therein) we now represent the bra-state 〈GJ1,J2...Jm

I1I2...Im
(i)�(i)| by the dia-

gram (a) of figure 1 and, similarly, the ket-state |�j 〉 = G
P1P2...Pk

Q1Q2...Qk
|�i〉 by the dia-

gram (b) of the same figure.
Recall that the creation operators [cf. equation (6)] are associated with the

oriented lines leaving a given vertex, while those corresponding to annihilation
operators enter the vertex. Moreover, the hole lines (core or active relative to
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Figure 1. A schematic representation of various vertices used in the evaluation of the SU CC
coupling coefficients. See the text for details.

|�i〉 as a Fermi vacuum) are directed from the left to the right, while the parti-
cle lines are heading in the opposite direction. We shall refer to the vertices (a)
and (b) of figure 1 as the bra and ket vertices, respectively. (Strictly speaking,
all the vertices that we employ are in fact super-vertices consisting of a number
of simple vertices, each involving one entering and one leaving the fermion line
[10,11,18,20,22,23].)

In a similar way, we associate with the fully antisymmeterized CI-type
τ -coefficients or amplitudes, equations (14) and (15), the oval-shaped i or j

τ -vertices of a general kind shown in figure 1(c) and, similarly, the CC-type
t-amplitudes we represent via the t-vertices shown in figure 1(d). Note that in
each case we employ Goldstone-type vertices, since they can be easily converted
to those of the Hugenholtz type by shrinking them to a single point-like ver-
tex. In actual evaluations of the considered quantities we employ the so-called
Brandow approach, in which we represent each Hugenholtz diagram by one of
its “antisymmetrized” Goldstone versions (irrespective of which one). In this way
we can benefit from a small number of Hugenholtz diagrams (i.e., from the
fully antisymmetrized formalism) and yet properly determine the correct phase
of each term.

To evaluate the desired quantities, we thus have to construct all resulting,
topologically inequivalent, connected diagrams and associate with them the alge-
braic expressions following the standard rules. Since all the lines in our diagrams
carry the fixed labels, so that no free labels are present, there are no summations
over the free labels and all the weights are equal to 1. The phase is given by the
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usual factor (−1)�+h, where � is the number of closed loops of oriented lines and
h designates the number of hole lines. (Note that in the present case all fermion
lines are of the internal kind.) An extra factor of (−1) is then associated with
each i-type t-vertex, arising from the fact that e−T (i) = 1 − T (i) + 1

2 [T (i)]2 −
1
3! [T (i)]3+. . . . We shall see, however, that in all diagrams considered here at most
one τ or t vertex of this kind can appear.

In constructing the resulting diagrams, we have to respect the following
rules for the labelling of oriented lines (cf. equation (31)):

(i) Bra-vertex [figure 1(a)]: All fermion lines extend to the RHS of this ver-
tex and carry either the core or virtual labels. In addition, the outgoing
lines can also carry the active labels Qµ and the ingoing ones the active
labels Pµ. Note, however, that in the case that only active labels Pµ and
Qµ, µ = 1, . . . , κ are present, implying the excitation order κ for the
bra-state, we must have that k > κ, and similar restrictions apply even
when only some Pµ and/or Qµ labels are present in addition to the core
and virtual ones (see below). No algebraic expression is associated with
this vertex when evaluating the resulting diagrams.

(ii) Ket vertex [figure 1(b)]: Only Pµ and Qµ, µ = 1, . . . , k labels are pres-
ent, Qµ’s labelling the ingoing lines and Pµ’s the outgoing ones. Again,
no algebraic expression is associated with this vertex when evaluating the
resulting diagrams.

(iii) τ(j) or t (j) vertices [figure 1(c) or 1(d), respectively]: The lines attached
to the LHS (issuing from the bra-vertex) can carry only core or vir-
tual MSO labels; those attached to the RHS are invariably the active
MSO labels (Pµ’s for ingoing and Qµ’s for outgoing lines). The algebraic
expressions associated with these vertices are the τ(j) or t (j) amplitudes
whose superscripts (subscripts) are given by the MSO labels on the out-
going (ingoing) fermion lines. Each pair of corresponding superscripts
and subscripts is associated with a pair of oriented lines that enter and
leave the same point (or vertex) of a given τ(j) or t (j) (super)vertex.
The τ(j) and t (j) amplitudes are antisymmetric with respect to any sep-
arate permutation of their subscripts and superscripts and thus invari-
ant to simultaneous permutations of corresponding pairs of super- and
sub-scripts.

(iv) τ(i) or t (i) vertices [figure 1(e) or 1(f)]: All the fermion lines extend to
the LHS of these vertices and can carry any MSO label. However, Pµ’s
must label the outgoing and Qµ’s the ingoing lines. In all cases consid-
ered in this work, only the vertices representing the type shown in figure
1(e) [or 1(f) for combined t (i) and t (j) vertices, see below] can arise. The
algebraic expression that is associated with these vertices is given by the
same rule as in the preceding case (iii).
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Note that in all cases just mentioned the core, active or virtual MSOs stand
for local core, local active or local virtual MSOs, respectively. To simplify the
resulting diagrams, we employ a simplified labelling of closed loops that involve
only the corresponding particle and hole lines issuing from the same vertex of
the ket-supervertex i and carry the labels Pµ and Qµ, µ = 1, 2, . . . , k, respec-
tively, as shown in the diagram (g) of figure 1.

In the following, we first consider general expressions for �k(�) with an
arbitrary k in terms of the CI-type τ(j) and τ(i) vertices or amplitudes and, sub-
sequently, we derive the explicit expressions in terms of the antisymmetrized t (j)

and t (i) vertices or amplitudes. In all cases, we only consider at most a doubly
excited submanifold of M⊥

0 . This provides us with all necessary expressions for
the SU CCSD method, assuming that the reference configurations also differ in
at most two MSOs (i.e., for k = 2). These results provide sufficient illustration of
the diagrammatic approach to the SU CC formalism and can be easily extended
to a higher excitation order if required. They also provide ample illustration of
the role of the C-conditions for the disappearance of disconnected terms.

4.2.1. General expressions
We first consider a general case involving model-space references |�i〉 and

|�j 〉 differing in k MSOs, equations (28)–(31), while restricting the excited state
submanifold M⊥

0 to at most doubles, i.e., m = 1 and 2. In each case, we have to
distinguish four types of excitations, namely the core to active, core to virtual,
active to virtual, and the active to active ones (all in the “local” sense relative
to the configurations |�i〉 and �j 〉 involved).
(i) Single excitations

To obtain the expressions for the coupling coefficients given by equ-
tions (78)–(81) of [13], we construct the resulting diagrams shown in figure 2
and evaluate them as indicated in table 1. Note that only connected diagrams
are shown, since contributions from the disconnected diagrams invariably vanish
in view of the C-conditions. For example, in the case of �k(P1 : A), we obtain
in addition to the diagram (a) of figure 2 also the disconnected diagram shown
in figure 3(a). Similar disconnected diagrams arise for �k(R:Q1) and �k(R : A),
always containing a subdiagram (b) of figure 3, which contributes the τ(j) van-
ishing amplitude, equation (15). Finally, note that the coupling coefficient �k(P1 :
Q1) can only arise when k > 1.
(ii) Double excitations

Considering, next, the double excitations, we have to distinguish different
cases depending on the magnitude of k, equations (28)–(31). For an arbitrary
k � 1, we have four distinct cases represented by equations (82)–(85) of [13].
To reduce the number of resulting diagrams that only differ by the labelling
of nonequivalent lines, we exploit the permutation operators PXY defined by
equation (25). Note that these operators are most easily determined from the
Hugenholtz version of each diagram, since they pertain to the MSO labels that
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Figure 2. Resulting diagrams for the coupling coefficients �k(J1 : I1) for the core-active (a),
active-virtual (b), core-virtual (c), and active-active (d) excitations. The corresponding algebraic

expressions in terms of the τ -amplitudes are given in table 1.

Table 1
Algebraic expressions for �k(J1 : I1) associated with dia-

grams of figure 2.

Coupling coefficient Diagram (figure 2) Contribution

�k(P1 : A) (a) −τ
Q1Q2 ...Qk

A P2 ...Pk
(j)

�k(R : Q1) (b) τ
R Q2 ...Qk

P1P2 ...Pk
(j)

�k(R : A) (c) τ
RQ1 ...Qk

AP1 ...Pk
(j)

�k(P1 : Q1), k > 1 (d) τ
Q2 ...Qk

P2 ...Pk
(j)

Figure 3. An example of disconnected contributions (a). Such contributions vanish in view of the
C-conditions, equation (15), represented diagrammatically in (b).
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Table 2
Algebraic expressions for �k(J1J2:I1I2) associated with diagrams of figure 4.

Coupling coefficient Diagram (figure 4) Contribution

�k(P1R : AB) (a1) −τ
Q1RQ2 ...Qk

A BP2 ...Pk
(j) = τ

RQ1Q2 ...Qk

A B P2 ...Pk
(j)

(a2) PABtR
B (i) τ

Q1Q2 ...Qk

A P2 ...Pk
(j)

= −PABtR
A (i) τ

Q1Q2 ...Qk

B P2 ...Pk
(j)

(a3) −PABt
P1
A (i) τ

RQ1 ...Qk

BP1 ...Pk
(j)

�k(RS : AQ1) (b1) τ
R S Q2 ...Qk

AP1P2 ...Pk
(j)

(b2) −PRSt
R
A (i) τ

S Q2 ...Qk

P1P2 ...Pk
(j)

(b3) −PRSt
S
Q1

(i) τ
RQ1 ...Qk

AP1 ...Pk
(j)

= PRSt
R
Q1

(i) τ
SQ1 ...Qk

AP1 ...Pk
(j)

�k(RP1 : AQ1) (c1) τ
RQ2 ...Qk

AP2 ...Pk
(j)

(c2) −tR
A (i) τ

Q2 ...Qk

P2 ...Pk
(j)

(c3) −t
P1
Q1

(i) τ
RQ1 ...Qk

AP1 ...Pk
(j)

(c4) t
P1
A (i) τ

R Q2 ...Qk

P1P2 ...Pk
(j)

(c5) −tR
Q1

(i) τ
Q1Q2 ...Qk

A P2 ...Pk
(j)

�k(RS : AB) (d1) τ
RSQ1 ...Qk

ABP1 ...Pk
(j)

(d2) −PRSPABtR
A (i) τ

SQ1 ...Qk

BP1 ...Pk
(j)

are associated with nonequivalent fermion lines of the corresponding nonlabelled
diagram (also called a skeleton [10]).

The relevant resulting diagrams are shown in figures 4 and 5, and their
algebraic equivalents are listed in tables 2 and 3, respectively. Again, a number
of disconnected diagrams can arise (e.g., for diagrams analogous to (a3), (b3),
(c5), and (d2) of figure 4, all involving a subdiagram (b) of figure 3 and thus
yielding a vanishing contribution in view of the pertinent C-condition). It should
also be noted that in the Hugenholtz version of diagram (a1) of figure 4, the
hole lines labelled by A and B represent equivalent lines, but not in diagrams
(a2) and (a3) of the same figure, thus yielding two nonequivalent versions which
are encompassed via the operator PAB , equation (25), and similarly for other
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Figure 4. Resulting diagrams for the coupling coefficients �k(J1J2 : I1I2), k � 1, corresponding to
equations (82)–(85) of [13]. The associated algebraic expressions are given in table 2.
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Figure 5. Resulting diagrams for the coupling coefficients �k(J1J2 : I1I2), k � 2, corresponding to
equations (86)–(90) of [13]. The associated algebraic expressions are given in table 3. In diagrams

(e2) and (e3) we define µ = 3 − µ with µ = 1, 2.

diagrams. The first four coupling coefficients listed in table 3 and figure 5 can
only arise when k > 1 and the last one only when k > 2. In those cases no dis-
connected diagrams arise.

Finally, we note a sign misprint in two of the expressions given in [13],
namely the second term on the RHS of equation (83) should have a plus sign,
as well as the last term on the RHS of equation (87) [the corresponding terms
are (b3) in table 2 and (b4), (b5) in table 3].
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Figure 5. continued

4.2.2. Explicit expressions
Although the above given expressions in terms of τ(j) coefficients are very

compact, in actual implementations we often require the explicit expressions in
terms of the t (i) and t (j) amplitudes. Indeed, in the CCSD case, we truncate the
cluster amplitudes at the two-body level. Moreover, for sufficiently large k val-
ues, the τ(j) coefficients involve a number of disconnected terms and the general
expressions, equations (82)–(90) of [13], contain a number of vanishing terms
that are associated with disconnected resulting diagrams.
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Table 3
Algebraic expressions for �k(J1J2 :I1I2) associated with diagrams of figure 5. We define µ = 3 − µ,

µ = 1, 2.

Coupling Diagram
coefficient (figure 5) Contribution

�k(P1P2 :Q1A), k > 1 (a1) −τ
Q2Q3 ...Qk

A P3 ...Pk

(a2)

(a3)

−t
P2
A (i) τ

Q2 ...Qk

P2 ...Pk
(j)

−t
P1
A (i) τ

Q2Q3 ...Qk

P1P3 ...Pk
(j)

}
− ∑2

µ=1 t
Pµ

A (i) τ
Q2Q3 ...Qk

PµP3 ...Pk
(j)

(a4)

(a5)

t
P1
Q1

(i) τ
Q2Q1Q3 ...Qk

A P1P3 ...Pk
(j)

−t
P2
Q1

(i) τ
Q1Q2Q3 ...Qk

A P2P3 ...Pk
(j)


 − ∑2

µ=1 t
Pµ

Q1
(i) τ

Q1Q2Q3 ...Qk

A PµP3 ...Pk
(j)

�k(P1R :Q1Q2), k > 1 (b1) τ
R Q3 ...Qk

P2P3 ...Pk
(j)

(b2)

(b3)

−tR
Q2

(i) τ
Q2Q3 ...Qk

P2P3 ...Pk
(j)

−tR
Q1

(i) τ
Q1Q3 ...Qk

P2P3 ...Pk
(j)

}
− ∑2

µ=1 tR
Qµ

(i) τ
QµQ3 ...Qk

P2P3 ...Pk
(j)

(b4)

(b5)

−t
P1
Q1

(i) τ
R Q1Q3 ...Qk

P2P1P3 ...Pk
(j)

t
P1
Q2

(i) τ
R Q2 ...Qk

P1P2 ...Pk
(j)

} ∑2
µ=1 t

P1
Qµ

(i) τ
R QµQ3 ...Qk

P1P2P3 ...Pk
(j)

�k(P1P2 :AB), k > 1 (c1) τ
Q1Q2Q3 ...Qk

A B P3 ...Pk
(j)

(c2)

(c3)

PABt
P1
A (i) τ

Q2Q1Q3 ...Qk

B P1P3 ...Pk
(j)

PABt
P2
B (i) τ

Q1Q2 ...Qk

A P2 ...Pk
(j)

}
− PAB

∑2
µ=1 t

Pµ

A (i) τ
Q1Q2Q3 ...Qk

B PµP3 ...Pk
(j)

�k(RS :Q1Q2), k > 1 (d1) τ
R S Q3 ...Qk

P1P2P3 ...Pk
(j)

(d2)

(d3)

−PRSt
R
Q1

(i) τ
S Q1Q3 ...Qk

P2P1P3 ...Pk
(j)

−PRSt
S
Q2

(i) τ
R Q2 ...Qk

P1P2 ...Pk
(j)


 PRS

∑2
µ=1 tR

Qµ
(i) τ

S QµQ3 ...Qk

P1P2P3 ...Pk
(j)

�k(P1P2 :Q1Q2), k > 2 (e1) τ
Q3 ...Qk

P3 ...Pk
(j)

(e2)

(e3)

− ∑2
µ=1 t

Pµ

Qµ
(i) τ

QµQ3 ...Qk

PµP3 ...Pk
(j)

− ∑2
µ=1 t

Pµ

Qµ
(i) τ

QµQ3 ...Qk

PµP3 ...Pk
(j)

}
− ∑2

µ,ν=1 t
Pν

Qµ
(i) τ

QµQ3 ...Qk

PνP3 ...Pk
(j)

To derive the explicit expressions for the coupling coefficients, we now
restrict our considerations to references that differ in at most two MSOs, i.e., to
the cases k = 1 and k = 2. Thus, in addition to distinguishing different types
of local excitations (core-active, etc., of both pure and mixed types) as in the
general case, we also have to distinguish cases of different k values, namely the
cases corresponding to k = 1 and k = 2. For greater compactness, we also intro-
duce the quantity wR

A(ji),
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wR
A(ji) = tRA (j) − tRA (i) , (32)

which we represent by the diagram (f) of figure 1.
The construction of the resulting diagrams in terms of the t (i) and t (j)

vertices and their subsequent evaluation in terms of the corresponding cluster
amplitudes, yielding the explicit expressions for the coupling coefficients, may be
achieved in essentially two ways: We can either exploit the general diagrams and
formulas that have been derived in the preceding subsection or we can construct
the relevant diagrams from the outset, starting with the bra- and ket-vertices in
addition to one or more t-vertices. This latter procedure is best carried out in
stages by first drawing the nonoriented diagrams of the Hugenholtz type, which
can be easily classified by the number of t-vertices employed and by the possi-
ble graph theoretical connection schemes and, in the second step, by introducing
all possible orientations of fermion lines, while choosing one Goldstone repre-
sentative for each Hugenholtz diagram. Such a procedure is particularly useful in
more complex cases when a considerable number of diagrams must be accounted
for, as will be illustrated below on a suitable example.

Proceeding in either of these ways, we can make certain that no result-
ing diagram has been missed. The mutual cancellation of disconnected terms
occurs automatically and can be checked in an algebraic way. We can thus pro-
ceed to consider the relevant cases and re-derive the expressions given by equ-
tions (93)–(94) and (103)–(114) of [13] using the diagrammatic technique. We
shall present directly the required resulting diagrams and the corresponding alge-
braic expressions they represent, and only in the most laborious case of the cou-
pling coefficient �2(RS : AB), equation (114) of [13], we shall illustrate the
above mentioned multistage process of diagram construction. Should the reader
be unable to construct the resulting diagrams in other cases directly, he can
– for pedagogical reasons – always proceed in the reverse direction and con-
vert the final resulting diagrams given below into the Hugenholtz-type nonori-
ented ones and, after eliminating the equivalent ones, to start from the very
beginning with the bra and ket vertices and the t (i) and t (j) vertices of different
valency.

(i) k = 1 case
Writing

|�i〉 = |{(AB . . . )Q}〉 , (33)

and
|�j 〉 = |{(AB . . . )P }〉 , (34)

we choose appropriate bra and ket vertices and systematically generate the non-
oriented Hugenholtz diagrams for singly and doubly excited bra-configurations
of various (i.e., core-active, core-virtual, etc., as well as mixed) types. Orienting
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Figure 6. Resulting diagrams for the coupling coefficients �1(J : I ), corresponding to equations
(93)–(95) of [13]. Their algebraic equivalents are listed in table 4.

Table 4
Algebraic expressions for �1(J :I ) associated with diagrams

of figure 6.

Coupling coefficient Diagram (figure 6) Contribution

�1(R : Q) (a) tR
P (j)

�1(P : A) (b) −t
Q

A (j)

�1(R : A) (c1) −t
RQ

PA (j)

(c2) −tR
P (j) t

Q

A (j)

the fermion lines in all possible ways we then easily generate a Goldstone rep-
resentation of each Hugenholtz diagram. For the monoexcited case, these dia-
grams are shown in figure 6 and for the doubly excited case in figure 7, while
the results of their evaluation are listed in tables 4 and 5, respectively. It is then
easy to verify that these results recover the algebraically generated expressions
given by equations (93)–(99) of [13].

(ii) k = 2 case
In this case, equtions (28) and (29) become

|�i〉 = |{(AB . . . )Q1Q2}〉 , (35)

and

|�j 〉 = |{(AB . . . )P1P2}〉 . (36)

For the sake of brevity we present in the following only the resulting diagrams of
the Brandow-type (one Goldstone representative for each Hugenholtz diagram)
and only in the most laborious case of the �2(RS : AB) coefficient we also show
their systematic generation starting with nonoriented Hugenholtz diagrams.

For the singly-excited bra-configurations, the resulting diagrams and their
contributions are shown in figure 8 and table 6, respectively. The correspondence
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Table 5
Algebraic expressions for �1(J1J2 : I1I2) associated with diagrams of

figure 7.

Coupling coefficient Diagram (figure 7) Contribution

�1(PR :AB) (a1) −t
RQ

BA (j) = t
RQ

AB (j)

(a2) −PABwR
B(ji) t

Q

A (j)

= PABwR
A(ji) t

Q

B (j)

(a3) PABtP
A (i) t

QR

BP (j)

(a4) PABtP
A (i) t

Q

B (j) tR
P (j)

�1(RS :AQ) (b1) tRS
AP (j)

(b2) PRSw
R
A(ji) tS

P (j)

(b3) PRSt
S
Q(i) t

RQ

PA (j)

(b4) PRSt
S
Q(i) tR

P (j) t
Q

A (j)

�1(RP :AQ) (c1) wR
A(ji)

(c2) tP
A (i) tR

P (j)

(c3) −tR
Q(i) t

Q

A (j)

�1(RS :AB) (d1) t
RSQ

ABP (j)

(d2) −PABt
Q

A (j) tRS
PB(j)

= PABt
Q

A (j) tRS
BP (j)

(d3) −PRSt
R
P (j) t

QS

AB (j)

(d4) −PRSPABwR
A(ji) t

QS

BP (j)

(d5) −PRSPABwR
A(ji) t

Q

B (j) tS
P (j)

Table 6
Algebraic expressions for �2(J : I ) associated with

diagrams of figure 8.

Coupling Diagram
coefficient (figure 8) Contribution

�2(P1 : A) (a1) −t
Q1Q2
A P2

(j)

(a2) −PQ1Q2 t
Q1
A (j) t

Q2
P2

(j)

�2(R : Q1) (b1) t
R Q2
P1P2

(j)

(b2) PP1P2 t
R
P1

(j) t
Q2
P2

(j)

�2(P1 : Q1) (c) t
Q2
P2

(j)

�2(R : A) (d1) t
R Q1Q2
A P1P2

(d2) −PP1P2 PQ1Q2 t
Q1
P1

(j) t
Q2R

A P2
(j)

(d3) −PP1P2 PQ1Q2 t
Q1
P1

(j) t
Q2
A (j) tR

P2
(j)

(d4) −PQ1Q2 t
Q1
A (j) t

R Q2
P1P2

(j)

(d5) −PP1P2 t
R
P1

(j) t
Q1Q2
A P2

(j)
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Figure 7. Resulting diagrams for the coupling coefficients �1(J1J2 : I1I2), corresponding to
equations (96)–(99) of [13]. Their algebraic equivalents are listed in table 5.

with the algebraically derived expressions given by equations (103)–(106) of [13]
is immediately apparent. A similar derivation for doubly-excited bra-configura-
tions is more laborious. For this reason we start with the most laborious case of
a pure core-virtual double excitation that leads to the coefficient �2(RS : AB).
In this case, we shall proceed in a systematic way, starting with nonoriented
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Figure 7. continued

Hugenholtz diagrams, as outlined above. For the remaining cases we then pres-
ent only the resulting diagrams and their algebraic equivalents.

For �2(RS : AB) no fermion lines can directly interconnect the bra and
ket vertices. In constructing the nonoriented Hugenholtz diagrams we proceed
in a systematic way starting with the highest-order single t-vertex and, subse-
quently, add lower order t-vertices of various types, leading to diagrams shown
in figure 9. Introducing, next, the orientation of fermion lines in all possible
(allowed) ways, we easily generate the resulting diagrams shown in figure 10,
and by applying the above outlined rules we arrive at their algebraic equivalents
listed in table 7. In this case, the comparison with an earlier given expression,
equation (114) of [13], is not immediately obvious. In fact, by suitably grouping
various diagrammatic contributions, as implied in table 7, we can introduce the
following intermediates

ωKL
IJ (j) = tKL

IJ (j) + tKI (j)tLJ (j) , (37)

ξKL
IJ (j) = tKI (j)tLJ (j) − tLI (j)tKJ (j) , (38)

τKL
IJ (j) = tKL

IJ (j) + ξKL
IJ (j) , (39)

in addition to the quantity ωR
A(ji), equation (32), obtaining

�2(RS : AB) = t
RSQ1Q2
ABP1P2

(j)

+PAB

[
PRSw

R
A(ji) t

SQ1Q2
BP1P2

(j) + PQ1Q2 t
Q1
A (j) t

RS Q2
BP1P2

(j)
]

+PP1P2

[
PRSt

R
P1

(j) t
SQ1Q2
AB P2

(j) + PQ1Q2 t
Q1
P1

(j) t
RSQ2
ABP2

(j)
]
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Figure 8. Resulting diagrams for the coupling coefficients �2(J : I ), corresponding to equations
(103)–(106) of [13]. Their algebraic equivalents are listed in table 6.

+τ
Q1Q2
A B (j) τR S

P1P2
(j) + PABPP1P2ξ

Q1Q2
A P1

(j) ξRS
BP2

(j)

+PABPRSPP1P2

[
τ

RQ1
AP1

(j) τ
SQ2
BP2

(j) − ξ
RQ1
AP1

(j) ξ
SQ2
BP2

(j)
]

−PABPP1P2τ
R S
P1B

(j) τ
Q1Q2
A P2

(j) − PRSPQ1Q2τ
RQ1
AB (j) τ

S Q2
P1P2

(j)
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Figure 9. Nonoriented Hugenholtz diagrams for the coupling coefficient �2(RS :AB).

+PABPRS

{
tRA (i)

[
PP1P2 t

S
P1

(j) t
Q1Q2
B P2

(j) + PQ1Q2 t
Q1
B (j) t

S Q2
P1P2

(j)

+PP1P2PQ1Q2 t
Q1
P1

(j) ω
S Q2
P2B

(j)
]}

. (40)

The reader can easily verify the equivalence of both expressions, equations (40)
and (114) of [13].

For the remaining coupling coefficients �2(J1J2 : I1I2), the resulting
diagrams are listed in figures 11 and 12(a)–12(c), and their algebraic evalua-
tion is given in tables 8 and 9(a)–9(c), respectively. More compact expressions



J. Paldus et al. / Diagrams and coupled-cluster coupling coefficients 239

Figure 10. Resulting diagrams for the coupling coefficient �2(RS : AB), corresponding to
equation (114) of [13]. Their algebraic equivalents are listed in table 7.
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Figure 10. continued

for these coefficients, based on our diagrammatic results, can be written as
follows:

�2(RP1 :AQ1) = τ
RQ2
AP2

(j) − tRA (i) t
Q2
P2

(j) + t
P1
A (i) τ

R Q2
P1P2

(j) − tRQ1
(i) τ

Q1Q2
A P2

(j)

+t
P1
Q1

(i)
{
−t

RQ1Q2
AP1P2

(j) + PQ1Q2 t
Q1
A (j) t

R Q2
P1P2

(j)

+PP1P2

[
tRP1

(j) t
Q1Q2
A P2

(j) + PQ1Q2 t
Q2
P2

(j) ω
Q1R
A P1

(j)
]}

, (41)

�2(RP1 :AB) = −t
RQ1Q2
AB P2

(j) + PABt
P1
A (i)

{
t
RQ1Q2
BP1P2

(j) − PQ1Q2 t
Q1
B (j) τ

R Q2
P1P2

(j)

−PP1P2

[
tRP1

(j) t
Q1Q2
B P2

(j) − PQ1Q2 t
Q1
P1

(j) t
R Q2
BP2

(j)
]}

+PABPQ1Q2 t
Q2
A (j) t

Q1R
B P2

(j) − tRP2
(j) τ

Q1Q2
A B (j)

−PABwR
A(ji) τ

Q1Q2
B P2

(j) + PQ1Q2 t
Q2
P2

(j) t
Q1R
A B (j) , (42)
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Table 7
Algebraic expressions for the diagrams representing �2(RS : AB) of

figure 10.

Diagram (figure 10) Contribution

(a) t
RSQ1Q2
ABP1P2

(j)

(b) PP1P2 PQ1Q2 t
Q1
P1

(j) t
RSQ2
ABP2

(j)

(c) PABPRSw
R
A(ji) t

SQ1Q2
BP1P2

(j)

(d1) −PABPQ1Q2 t
Q1
A (j) t

SRQ2
BP1P2

(j)

(d2) −PRSPP1P2 t
R
P1

(j) t
S Q1Q2
B A P2

(j)

(e1)

(f1)

}
−PRSPQ1Q2 t

RQ1
AB (j) τ

S Q2
P1P2

(j)

(e2)

(f2)

}
−PABPP1P2 t

R S
P1B(j) τ

Q1Q2
A P2

(j)

(g1) −PABPRSPP1P2w
R
A(ji) tS

P1
(j) t

Q1Q2
B P2

(j)

(g2) −PABPRSPQ1Q2w
R
A(ji) t

Q1
B (j) t

S Q2
P1P2

(j)

(h1) PABPRSPP1P2 t
RQ1
AP1

(j) t
SQ2
BP2

(j)

(h2)

(i1)

(i2)

(l)


 τ

Q1Q2
A B (j) τR S

P1P2
(j)

(i3) −PABPRSPP1P2 PQ1Q2 t
R
P1

(j) t
Q1
A (j) t

SQ2
BP2

(j)

(j) PABPRSPP1P2 PQ1Q2w
R
A(ji) t

Q1
P1

(j) t
SQ2
BP2

(j)

(k) −PABPRSPP1P2 PQ1Q2w
R
A(ji) t

Q1
P1

(j) tS
P2

(j) t
Q2
B (j)

and

�2(RS :AQ1) = t
RS Q2
AP1P2

+ PRSt
R
Q1

(i)
{
t
SQ1Q2
AP1P2

(j) − PP1P2 t
S
P1

(j) τ
Q1Q2
A P2

(j)

− PQ1Q2

[
t
Q1
A (j) t

S Q2
P1P2

(j) − PP1P2 t
Q1
P1

(j) t
S Q2
AP2

(j)
]}

−PRSPP1P2 t
R
P2

(j) t
S Q2
P1A

(j) + t
Q2
A (j) τR S

P1P2
(j)

+PRSw
R
A(ji) τ

S Q2
P1P2

(j) + PP1P2 t
Q2
P2

(j) tR S
AP1

(j) . (43)

The equivalence of these formulas, equations (41)–(43), with those given in [13],
equtions (111)–(113), respectively, is not difficult to verify when we realize the
antisymmetry of � coefficients with respect to the spin-orbital interchange, i.e.,

�2(J1J2 : I1I2) = −�2(J2J1 : I1I2) = −�2(J1J2 : I2I1) = �2(J2J1 : I2I1) (44)

and employ definitions (37)–(39).

5. Discussion

We have seen how to generate algebraic expressions for the SU CC coupling
coefficients �k(J1J2, . . . , Jm : I1I2, . . . , Im), both in the general form involving
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Table 8
Algebraic expressions for the diagrams representing the

�2(J1J2 :I1I2) coupling coefficients shown in figure 11.

Coupling Diagram
coefficient (figure 11) Contribution

�2(P1P2 : AQ2) (a1) −t
Q1
A (j)

(a2) − ∑2
µ=1 t

Pµ

A (i) t
Q1
Pµ

(j)

(a3)

(a4)

} ∑2
µ=1 t

Pµ

Q2
(i) τ

Q1Q2
A Pµ

(j)

�2(P1R : Q1Q2) (b1) tR
P2

(j)

(b2) − ∑2
µ=1 tR

Qµ
(i) t

Qµ

P2
(j)

(b3)

(b4)

}
− ∑2

µ=1 t
P1
Qµ

(i) τ
QµR

P1P2
(j)

�2(P1P2 : AB)
(c1)

(c2)

}
τ

Q1Q2
AB (j)

(c3)

(c4)

}
PAB

∑2
µ=1 t

Pµ

A (i) τ
Q1Q2
PµB (j)

�2(RS : Q1Q2)
(d1)

(d2)

}
τRS
P1P2

(j)

(d3)

(d4)

}
−PRS

∑2
µ=1 tR

Qµ
(i) τ

QµS

P1P2
(j)

Table 9a
Algebraic expressions for the diagrams representing the �2(RP1 : AQ1)

coupling coefficients shown in figure 12(a).

Coupling Diagram
coefficient (figure 12) Contribution

�2(RP1 : AQ1) (a1)

(a2)

(a3)

t
RQ2
AP2

(j)

wR
A(ji) t

Q2
P2

(j)

−t
Q2
A (j) tR

P2
(j)


 τ

RQ2
AP2

(j) − tR
A (i) t

Q2
P2

(j)

(a4) −t
P1
Q1

(i) t
RQ1Q2
AP1P2

(j)

(a5)

(a6)

}
t
P1
A (i) τ

R Q2
P1P2

(j)

(a7)

(a8)

}
−tR

Q1
(i) τ

Q1Q2
A P2

(j)

(a9) t
P1
Q1

(i) PQ1Q2 t
Q1
A (j) t

R Q2
P1P2

(j)

(a10) t
P1
Q1

(i) PP1P2 t
R
P1

(j) t
Q1Q2
A P2

(j)

(a11) t
P1
Q1

(i) PP1P2 PQ1Q2 t
Q2
P2

(j) t
Q1R

A P1
(j)

(a12) t
P1
Q1

(i) PP1P2 PQ1Q2 t
Q1
A (j) tR

P1
(j) t

Q2
P2

(j)

the antisymmetrized CI-type τ -vertices or coefficients and in the explicit form
in terms of the CC-type t-vertices or amplitudes, by relying on the diagram-
matic technique. Let us now see the connection between these two schemes by
considering the transition from the general expressions of the former kind to
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Figure 11. Resulting diagrams for the coupling coefficients �2(J1J2 : I1I2), corresponding to
equations (107)–(110) of [13]. Note that in the first case we label the MSOs by (P1P2 : AQ2) rather
than with (P1P2 : AQ1) as done in [13] in order to achieve the hole-particle symmetry of our dia-
grams with the case (P1R : Q1Q2). We also define µ = 3−µ with µ = 1, 2, wherever applicable. The

algebraic equivalents are given in table 8.

the explicit formulas in terms of the cluster amplitudes, and let us analyze it in
some detail showing how the disconnected terms, which vanish in view of the
C-conditions, are automatically eliminated when only connected diagrams are
taken into account.

Let us consider the case of the �2(RS : AB) coefficient, equation (40) (cf.
also equation (85), k = 2 and equation (114) of [13]). For k = 2, equation (85)
of [13] takes the form

�2(RS :AB) = τ
RSQ1Q2
ABP1P2

(j) − PABPRSt
R
A (i) τ

SQ1Q2
BP1P2

(j) . (45)

Consider first the last term on the RHS of equation (45), which corre-
sponds to those terms in equation (40) (or in equation (114) of [13]) that involve
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Figure 11. continued

the t (i) vertex or amplitude. For the τ coefficient that characterizes this term we
easily find that (in all terms we drop the argument j for simplicity’s sake)

τ
SQ1Q2
BP1P2

= t
SQ1Q2
BP1P2

+ tSBt
Q1Q2
P1P2

− tSP1
t
Q1Q2
BP2

+ tSP2
t
Q1Q2
BP1

− t
Q1
B t

SQ2
P1P2

+ t
Q1
P1

t
SQ2
BP2

− t
Q1
P2

t
SQ2
BP1

+ t
Q2
B t

SQ1
P1P2

− t
Q2
P1

t
SQ1
BP2

+ t
Q2
P2

t
SQ1
BP1

+ tSB

(
t
Q1
P1

t
Q2
P2

− t
Q1
P2

t
Q2
P1

)
− tSP1

(
t
Q1
B t

Q2
P2

− t
Q1
P2

t
Q2
B

)
+ tSP2

(
t
Q1
B t

Q2
P1

− t
Q1
P1

t
Q2
B

)
, (46)
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Figure 12a. Resulting diagrams for the coupling coefficient �2(RP1 :AQ1), corresponding to equa-
tion (111) of [13]. The algebraic equivalents are given in table 9a. For simplicity’s sake, we do not
explicitly indicate the relevant permutation operators PP1P2 and PQ1Q2 in the figure, since these
are easily determined from the corresponding Hugenholtz diagrams (by identifying the relevant

nonequivalent fermion lines) and are included in the algebraic expressions in table 9a.

thus involving one T3 term, 32 = 9 T1T2 terms, and 3! = 6 terms of the 1
3!T

3
1

type.
Substitute, next, the above given expression, equation (46), for τ

SQ1Q2
BP1P2

(j) into
the second term on the RHS of equation (45) and compare the result with the
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Figure 12b. Resulting diagrams for the coupling coefficient �2(RP1 : AB), corresponding to equa-
tion (112) of [13]. The algebraic equivalents are given in table 9b. For simplicity’s sake, we do not
explicitly indicate the relevant permutation operators PAB , PP1P2 , and PQ1Q2 in the figure, since these
are easily determined from the corresponding Hugenholtz diagrams (by identifying the relevant

nonequivalent fermion lines) and are included in the algebraic expressions in table 9b.

corresponding terms of this type in equation (40) (namely those involving the ampli-
tude tRA (i)). We easily find that we can recover all the terms of this type appearing
in equation (40) using the terms of equation (46) that are not underlined. Thus, the
second term on the RHS of equation (45) involves the additional terms

PABPRSt
R
A (i) tSB(j)

[
t
Q1Q2
P1P2

(j) + t
Q1
P1

t
Q2
P2

− t
Q1
P2

t
Q2
P1

]
= PABPRSt

R
A (i) tSB(j) τ

Q1Q2
P1P2

(j) .

(47)
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Figure 12c. Resulting diagrams for the coupling coefficient �2(RS : AQ1), corresponding to equa-
tion (113) of [13]. The algebraic equivalents are given in table 9c. For simplicity’s sake, we do not
explicitly indicate the relevant permutation operators PRS , PP1P2 , and PQ1Q2 in the figure, since these
are easily determined from the corresponding Hugenholtz diagrams (by identifying the relevant

nonequivalent fermion lines) and are included in the algebraic expressions in table 9c.

However, these terms vanish in view of the C-condition

τ
Q1Q2
P1P2

(j) = 0 , (48)
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Table 9b
Algebraic expressions for the diagrams representing the �2(RP1:

AB) coupling coefficients shown in figure 12(b).

Coupling Diagram
coefficient (figure 12) Contribution

�2(RP1 : AB) (b1) −t
RQ1Q2
A B P2

(j)

(b2) PABt
P1
A (i) t

RQ1Q2
B P1P2

(j)

(b3) PABPQ1Q2 t
Q2
A (j) t

Q1R

B P2
(j)

(b4) −PQ1Q2 t
Q2
P2

(j) t
RQ1
A B (j)

(b5)

(b6)

}
tR
P2

(j) τ
Q1Q2
B A (j)

(b7)

(b8)

}
−PABwR

A(ji) τ
Q1Q2
B P2

(j)

(b9)

(b10)

}
−PABPQ1Q2 t

P1
A (i) t

Q1
B (j) τ

R Q2
P1P2

(j)

(b11) −PABt
P1
A (i)PP1P2 t

R
P1

(j) t
Q1Q2
B P2

(j)

(b12) PABPQ1Q2 t
P1
A (i)PP1P2 t

Q1
P1

(j) t
RQ2
B P2

(j)

Table 9c
Algebraic expressions for the diagrams representing the �2(RS :

AQ1) coupling coefficients shown in figure 12(c).

Coupling Diagram
coefficient (figure 12) Contribution

�2(RS : AQ1) (c1) t
RSQ2
A P1P2

(c2) PRSt
R
Q1

(i) t
SQ1Q2
A P1P2

(j)

(c3) −PRSPP1P2 t
R
P2

(j) t
SQ2
P1A (j)

(c4) PRSPP1P2 t
R
Q1

(i)PQ1Q2 t
Q1
P1

(j) t
SQ2
A P2

(j)

(c5)

(c6)

}
−t

Q2
A (j) τR S

P2P1
(j) = t

Q2
A (j) τR S

P1P2
(j)

(c7)

(c8)

}
PRSw

R
A(ji) τ

SQ2
P1P2

(j)

(c9) PP1P2 t
Q2
P2

(j) tR S
A P1

(j)

(c10)

(c11)

}
−PRSPP1P2 t

R
Q1

(i) tS
P1

(j) τ
Q1Q2
A P2

(j)

(c12) −PRSt
R
Q1

(i) PQ1Q2 t
Q1
A (j) t

SQ2
P1P2

(j)

since G
Q1Q2
P1P2

(j) represents an internal excitation in view of equations (35) and
(36). The diagrammatic representation of these terms, equation (47), is shown in
figure 13.
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Figure 13. Resulting diagrams representing the disconnected terms (47).

Similarly we can handle the first term on the RHS of equation (45), which
is given by τ

RSQ1Q2
ABP1P2

(j). Dropping again the argument j in all the amplitudes for
simplicity’s sake, we can write

τ
RSQ1Q2
ABP1P2

= t
RSQ1Q2
ABP1P2

+ PAB

[
PRSt

R
A t

SQ1Q2
BP1P2

+ PQ1Q2 t
Q1
A t

RSQ2
BP1P2

]
+ PP1P2

[
PRSt

R
P1

t
SQ1Q2
ABP2

+ PQ1Q2 t
Q1
P1

t
RSQ2
ABP2

]
+ tRS

AB t
Q1Q2
P1P2

+ tRS
P1P2

t
Q1Q2
AB

+ PABPP1P2

[
PRSt

RQ1
AP1

t
SQ2
BP2

− tRS
P1B

t
Q1Q2
AP2

]
− PRSPQ1Q2 t

RQ1
AB t

SQ2
P1P2

+ PAB

[
tRA tSB t

Q1Q2
P1P2

+ t
Q1
A t

Q2
B tRS

P1P2

]
+ PP1P2

[
t
Q1
P1

t
Q2
P2

tRS
AB + tRP1

tSP2
t
Q1Q2
AB

]
− PABPRSPP1P2PQ1Q2

(
tRP1

t
Q1
A − tRA t

Q1
P1

)
t
SQ2
BP2

+ PABPP1P2

[
PQ1Q2 t

Q1
P1

t
Q2
A tRS

BP2
+ PRSt

R
P1

tSA t
Q1Q2
BP2

]
− PRSPQ1Q2

[
PP1P2 t

R
P1

t
Q1
P2

t
SQ2
AB + PABtRA t

Q1
B t

SQ2
P1P2

]
+ PABPP1P2

[
tRA tSB t

Q1
P1

t
Q2
P2

+ tRP1
tSP2

t
Q1
A t

Q2
B + PRSPQ1Q2 t

R
P1

tSA t
Q1
B t

Q2
P2

]
.(49)

We thus have one four-body amplitude, 42 = 16 terms of the T1T3 type, 1
2(4

2)
2 =

18 terms of the 1
2T 2

2 type, 2 · (4
2)

2 = 72 terms of the 1
2T 2

1 T2 type, and 4! = 24
terms of the 1

4!T
4

1 type.
We see again that these terms yield the corresponding ones occurring in the

expression (40), except for those that are underlined, namely

tRS
AB

(
t
Q1Q2
P1P2

+ PP1P2 t
Q1
P1

t
Q2
P2

)
+ PABtRA tSB

(
t
Q1Q2
P1P2

+ PP1P2 t
Q1
P1

t
Q2
P2

)
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Figure 14. Resulting diagrams representing the disconnected terms (50).

= (
tRS
AB + PABtRA tSB

) (
t
Q1Q2
P1P2

+ PP1P2 t
Q1
P1

t
Q2
P2

)
= τRS

AB τ
Q1Q2
P1P2

, (50)

which vanish in view of the C-condition (48). All these contributions, equa-
tion (50), represent again disconnected terms whose diagrammatic representation
is shown in figure 14.

We can thus conclude that the diagrammatic approach automatically imple-
ments the C-conditions assuming that only connected diagrams are taken into
account. An exactly analogous procedure that we have demonstrated for the
�2(RS :AB) coefficient can be carried out for all other coupling coefficients.
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